This paper presents the first simulation model of a tilting pad journal bearing (TPJB) using three-dimensional (3D) computational fluid dynamics (CFD), including multiphase flow, thermal-fluid, transitional turbulence, and thermal deformation of the shaft and pads employing two-way fluid–structure interaction (FSI). Part I presents a modeling method for the static performance. The model includes flow between pads BP, which eliminates the use of an uncertain, mixing coefficient (MC) in Reynold’s equation approaches. The CFD model is benchmarked with Reynold’s model with a 3D thermal-film, when the CFD model boundary conditions are consistent with the Reynolds boundary conditions. The Reynolds model employs an oversimplified MC representation of the three-dimensional mixing effect of the BP flow and heat transfer, and it also employs simplifying assumptions for the flow and heat transfer within the thin film between the journal and bearing. This manufactured comparison shows good agree
https://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=2730186